Uncertain Data Models

نویسندگان

  • Christoph Koch
  • Dan Olteanu
چکیده

An uncertain data model is a system for representing incomplete or uncertain data. An uncertain database asserts that a database is in one of multiple alternative states (possible worlds), each being a standard database. A probability distribution can be assigned to the set of possible worlds. A detailed account of relational uncertain data models and their evolution, as well as related computational aspects is given in a recent research monograph [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval network data envelopment analysis model for classification of investment companies in the presence of uncertain data

The main purpose of this paper is to propose an approach for performance measurement, classification and ranking the investment companies (ICs) by considering internal structure and uncertainty. In order to reach this goal, the interval network data envelopment analysis (INDEA) models are extended. This model is capable to model two-stage efficiency with intermediate measures i...

متن کامل

A New Method for Ranking Distribution Companies with Several Scenarios Data by Using DEA/MADM

In Data Envelopment Analysis, uncertain data are the inseparable part of real models. Natural models usually deal with uncertain and probable data. Many researchers prioritize these kinds of data. For instance, they study fuzzy data, interval data, probabilistic models etc. In this article, we proposed a method in which the decision making units are uncertain in their inputs and outputs. In the...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Efficiency and Effectiveness with interval indices in stochastic environments

Non-parametric DEA is a technique on the basic of mathematical programming to determine the efficiency of homological decision making units. DEA models changes in demand cause changes in variations in output levels and also will cause changes in a firm’s inefficiency. Often a firm can adjust input influencing on the output level. Models designed with technique on DEA that considers changes in d...

متن کامل

A Single Machine Capacitated Production Planning Problem Under Uncertainty: A Grey Linear Programming Approach

The production planning is an important problem in most of manufacturing systems in practice. Unlike many researches existing in literature, this problem encounters with great uncertainties in parameters and input data. In this paper, a single machine capacitated production planning problem is considered and a linear programming formulation is presented. The production costs are assumed to be u...

متن کامل

Classical Center Location Problem Under Uncertain Environment

This paper investigates the $p$-center location problem on a network in which vertex weights and distances between vertices are uncertain. The concepts of the $alpha$-$p$-center and the expected $p$-center are introduced. It is shown that the $alpha$-$p$-center and the expected $p$-center models can be transformed into corresponding deterministic models. Finally, linear time algorithms for find...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017